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Abstract
In this paper we investigate the spectra and related questions for various combi-

natorial matrices, generalizing work by Carlitz, Cooper and Kennedy.

1 Introduction

In [8], R. Peele and P. Stănică studied n × n matrices with the (i, j) entry the binomial
coefficient

(
i−1
j−1

)
, respectively,

(
i−1
n−j
)

and derived many interesting results on powers of
these matrices. In [10], one of us found that the same is true for a much larger class of
what he called netted matrices, namely matrices with entries satisfying a certain type of
recurrence among the entries of all 2× 2 cells.

Let Rn be the matrix whose (i, j) entries are ai,j =
(
i−1
n−j
)
, which satisfy

ai,j−1 = ai−1,j−1 + ai−1,j . (1)

The previous recurrence can be extended for i ≥ 0, j ≥ 0, using the boundary conditions
a1,n = 1, a1,j = 0, j 6= n. Remark the following consequences of the boundary conditions
and recurrence (1): ai,j = 0 for i+ j ≤ n, and ai,n+1 = 0, 1 ≤ i ≤ n.

The matrix Rn was firstly studied by Carlitz [2] who gave explicit forms for the
eigenvalues of Rn. Let fn+1 (x) = det (xI −Rn) be the characteristic polynomial of Rn.
Thus

fn (x) =
n+1∑
r=0

(−1)r(r+1)/2

(
n

r

)
F

xn−r
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where
(
n
r

)
F

denote the Fibonomial coefficient, defined (for n ≥ r > 0) by(
n

r

)
F

=
F1F2 . . . Fn

(F1F2 . . . Fr) (F1F2 . . . Fn−r)

with
(
n
n

)
F

=
(
n
0

)
F

= 1. Carlitz showed that

fn (x) =
n−1∏
j=0

(
x− φjφ̄n−j

)
where φ, φ̄ =

(
1±
√

5
)
/2. Thus the eigenvalues of Rn are φn, φn−1φ̄, . . . , φφ̄

n−1
, φ̄

n
. We

shall give another proof of this result in the next section.
In [8] it was proved that the entries of the power Ren satisfy the recurrence

Fe−1a
(e)
i,j = Fea

(e)
i−1,j + Fe+1a

(e)
i−1,j−1 − Fea

(e)
i,j−1, (2)

where Fe is the Fibonacci sequence. Closed forms for all entries of Ren were not found,
but several results concerning the generating functions of rows and columns were obtained
(see [8, 10]). For instance, the entries in the first row and column of Ren are

a
(e)
1,j =

(
n− 1
j − 1

)
Fn−je−1 F

j−1
e

a
(e)
i,1 = Fn−ie−1F

i−1
e .

(3)

Further, the generating function for the (i, j)-th entry of the e-th power of a generalization
of Rn, namely

Qn(a, b) =
(
ai+j−n−1 bn−j

(
i− 1
n− j

))
1≤i,j≤n

is

B(e)
n (x, y) =

(Ue−1 + Uey)(b Ue−1 + y Ue)n−1

Ue−1 + Uey − x(Ue + Ue+1y)
.

Certainly, Qn(1, 1) = Rn. As an example,

Q6(a, b) =



0 0 0 0 0 1
0 0 0 0 b a
0 0 0 b2 2ab a2

0 0 b3 3ab2 3a2b a3

0 b4 4ab3 6a2b2 4a3b a4

b5 5ab4 10a2b3 10a3b2 5a4b a5

 .

Regarding this generalization, in [3], the authors gave the characteristic polynomial
of Qn (a, b) and the trace of kth power of Qn (a, b, ), that is, tr

(
Qkn (a, b)

)
, by using the

method of Carlitz [2].
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Lemma 1. Let gn (x) denote the characteristic polynomial of Qn (a, b) . Thus

gn (x) =
n∑
i=0

(−1)i(i+1)/2 bi(i−1)/2

(
n

i

)
U

xn−i (4)

and
tr
(
Qkn (a, b)

)
=
Ukn
Uk

, (5)

where
(
n
i

)
U

stands for the generalized Fibonomial coefficient, defined by(
n

r

)
U

=
U1U2 . . . Un

(U1U2 . . . Ur) (U1U2 . . . Un−r)
,

for n ≥ i > 0, where
(
n
n

)
U

=
(
n
0

)
U

= 1.

One of us extended in [10] some of these results to netted matrices, say Rα,β,γ,δn , whose
entries ai,j , i ≥ 0, j ≥ 0 satisfy (for i ≥ 1, j ≥ 1)

δai,j = αai−1,j + βai−1,j−1 + γai,j−1, (6)

with the boundary conditions

βai,0 + γai+1,0 = 0, for all 1 ≤ i ≤ n− 1 (7)
δai+1,n+1 − αai,n+1 = 0, for all 1 ≤ i ≤ n− 1. (8)

It was shown in [10] that the entries of any power of such a matrix will satisfy a similar
recurrence, and generating functions for these powers were found. In the case of the
Fibonacci sequence, the generating function of the i-th row of Ren is

r
(e)
i (x) =

∑
j≥1

a
(e)
i,j x

j−1 = (Fe + Fe+1x)i−1(Fe−1 + Fex)n−i

and, if e > 1, the generating function for the j-th column of Ren is

c
(e)
j (x) =

(
Fe+1x− Fe
Fe−1 − Fex

)j−1 Fne−1

Fe−1 − Fex

[
1 +

j−1∑
s=1

(
n

s

)(
Fe(Fe−1 − Fex)
Fe−1(Fe+1x− Fe)

)s]
.

where c(1)
j (x) = (1− x)j−1−nxn−j .

The matrix Qn(a, b) was introduced as a generalization of the Fibonacci matrix Q =(
0 1
1 1

)
which has the property that Qn ·

(
1
0

)
=
(
Fn−1

Fn

)
. The matrix Qn(a, b) displays

a similar property on the sequence Un+1 = aUn + bUn−1, that is, any e-th power of
Qn(a, b) multiplied by a fixed vector gives an n-tuple of consecutive terms of the sequence
U = (Uk)k. We refer to [10, 3] for more details.
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2 Spectra of Rn and Qn(a, b)

In [8], the authors proposed a conjecture on the eigenvalues, which was proven indepen-
dently in [1] and the unpublished manuscript [11]. In this section we give the proof of the
conjecture from [11] and we find the eigenvectors of Rn. In [8, 10], it was shown that the
inverse of Rn is the matrix

R−1
n =

(
(−1)n+i+j+1

(
n− i
j − 1

))
1≤i,j≤n

,

and, in general, the inverse of Qn(a, b) is

Q−1
n (a, b) =

(
(−1)n+i+j+1an+1−i−j bi−n

(
n− i
j − 1

))
1≤i,j≤n

. (9)

We define Kn to be the matrix with (i, j)-entry δi,n−j+1 (the Kronecker symbol), that
is, Kn is a permutation matrix having 1 on the secondary diagonal and 0 elsewhere.

Theorem 2. Let φ = 1+
√

5
2 , φ̄ = 1−

√
5

2 be the golden section and its conjugate. The
eigenvalues of Rn are:
1. {(−1)k+iφ2i−1, (−1)k+iφ̄2i−1}i=1,...,k, if n = 2k.
2. {(−1)k} ∪ {(−1)k+iφ2i, (−1)k+iφ̄2i}i=1,...,k, if n = 2k + 1.
Equivalently, the eigenvalues of Rn are φn, φn−1φ̄, . . . , φφ̄

n−1
, φ̄

n
.

Proof. First, we show that Rn is a permutation matrix away from Ln, namely

Rn ·Kn = Ln ⇐⇒ Rn = Ln ·Kn. (10)

It is a trivial matter to prove K2
n = In, which will give the equivalence. It suffices to show

the second identity, which follows easily, since an entry in Ln ·Kn is

n∑
k=1

(
i− 1
k − 1

)
δk,n−j+1 =

(
i− 1
n− j

)
.

Now, denote by An, the matrix obtained by taking absolute values of entries of R−1
n .

We show that Rn has the same characteristic polynomial (eigenvalues) as An, namely we
prove their similarity,

Kn ·Rn ·Kn = An. (11)

Since Kn · Rn ·Kn = Kn · Ln (by (10)), to show (11) it suffices to prove that Kn · Ln =((
n−i
j−1

))
i,j

. Therefore, we need

n∑
k=1

δi,n−k+1

(
k − 1
j − 1

)
=
(
n− i
j − 1

)
,

which is certainly true.
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We use a result of [7] to show that An in turn is similar to Dn, the diagonal matrix
whose diagonal entries are the elements in the eigenvalues set listed in decreasing order
according to size of the absolute value. For instance, for n = 4,

D4 =


α3 0 0 0
0 −α 0 0
0 0 −β 0
0 0 0 β3


Our claim will be proved if one can show that An is similar to Dn, and this will follow
from [7]. We sketch here that argument for the convenience of the reader. Define an array
bn,m by

bn,0 = 1 for all n ≥ 0
bn,m = 0 for all m > n

bn,m = bn−1,m−1 (−1)m
Fn
Fm

for all m ≤ n

Certainly, |bn,m| =
FnFn−1 · · ·Fn−m+1

Fm · · ·F1
. Let Cn = (ci,j)i,j , where


ci,i+1 = 1 ifi = 1, . . . , n− 1
cn,j = −bn,n+1−j ifj = 1, . . . , n
ci,j = 0 otherwise.

We observe that, in fact, Cn is the companion matrix of the polynomial with coefficients
bn,n+1−j . Let Xn be the matrix with entries

(
n−i
j−1

)
F j−1
i−2 F

n−j
i−1 . It turns out that the

eigenvector matrix En of An, with columns vectors listed in decreasing order of absolute
value of the corresponding eigenvalues, normalized so that the last row is made up of all
1’s, satisfies

XnEn = Vn,

where Vn is the Vandermonde matrix, which is the eigenvector matrix of Cn with eigen-
vectors listed in decreasing order of the absolute values of the corresponding eigenvalues.
Also,

XnAnX
−1
n = Cn and E−1

n AnEn = Dn.

Our theorem follows.

Easily we deduce

Corollary 3. The eigenvectors matrix of Rn, say Wn, with eigenvectors listed in decreas-
ing order of the absolute values of the corresponding eigenvalues, is

Wn = KnEn = KnX
−1
n Vn.

Proof. We showed thatKnRnKn = An and E−1
n AnEn = Dn. It follows that (E−1

n Kn)Rn(KnEn) =
Dn, which together with XnEn = Vn, proves the corollary.
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Example 4. For n = 4, the eigenvectors matrix is

W4 =


−α3 α β −β3

α2 −1
3β −1

3α β2

−α −1
3α

2 −1
3β

2 −β
1 1 1 1


We present below the first few characteristic polynomials of Qn(a, b) (for 1 ≤ n ≤ 7)

and we ask whether one can find their roots as in Theorem 2:

x2 − ax− b;
−(b+ x)

(
−xa2 + b2 + x2 − 2bx

)
;(

b3 − axb− x2
) (
xa3 + 3bxa+ b3 − x2

)
;(

b2 − x
) (
−xa4 − 4bxa2 + b4 + x2 − 2b2x

) (
b4 + 2xb2 + a2xb+ x2

)
;

−
(
b5 − 3axb2 − a3xb− x2

) (
b5 + axb2 − x2

) (
xa5 + 5bxa3 + 5b2xa+ b5 − x2

)
.

The argument that proves the next theorem is similar to the proof of Theorem 2, and so,
we omit it. One can also find two different ways to see its proof in [3] and [4].

Theorem 5. Let λ = a+
√
a2+4b
2 , λ̄ = a−

√
a2+4b
2 be the roots of the polynomial x2− ax− b.

The eigenvalues of Qn(a, b) are:
1. {(−b)k−i λ2i−1, (−b)k−i λ̄2i−1}i=1,...,k, if n = 2k.
2. {(−b)k}∪{(−b)k−i λ2i, (−b)k−i λ̄2i}i=1,...,k, if n = 2k+1. Equivalently, the eigenvalues
of Qn (a, b) can also be written in the following compact form λn, λn−1λ̄, . . . λλ̄

n−1
, λ̄

n
.

Since Rn, Qn(a, b) are column justified triangular matrices, the determinants of our
matrices are easy to compute, or we can use the previous result.

Corollary 6. We have det(Rn) = (−1)bn/2c and det(Qn(a, b)) = (−1)bn/2cbn(n−1)/2.

3 Arithmetic progressions and spectra of other combinato-
rial matrices

Let the sequences {un}, {vn} be defined by

un = aun−1 + bun−2

vn = avn−1 + bvn−2,

for n > 1, where u0 = 0, u1 = 1, and v0 = 2, v1 = a, respectively. Let α, β be the roots of
the associated equation x2 − ax− b = 0. The next lemma appears in [6].

Lemma 7. For k ≥ 1 and n > 1,

ukn = vkuk(n−1) + (−1)k+1 bkuk(n−2) (12)

vkn = vkvk(n−1) + (−1)k+1 bkvk(n−2).
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Using the sequence vk, we define the n× n matrix Hn

(
vk, b

k
)

as follows:

Hn

(
vk, b

k
)

=
(
vi+j−n−1
k

(
− (−b)k

)n−j ( i− 1
n− j

))
1≤i,j≤n

.

Observe that Hn

(
v1, b

1
)

= Qn (a, b) . As an example,

H6(vk, bk) =



0 0 0 0 0 1
0 0 0 0 − (−b)k vk
0 0 0 b2k −2 (−b)k vk v2

k

0 0 − (−b)3k 3b2kvk −3 (−b)k v2
k v3

k

0 b4k −4 (−b)3k vk 6b2kv2
k −4 (−b)k v3

k v4
k

− (−b)5k 5b4kvk −10 (−b)3k v2
k 10b2kv3

k −5 (−b)k v4
k v5

k


.

As in equation (9), we can easily find the inverse of the matrix Hn, namely

H−1
n (vk, bk) =

(
(−1)j+1(−b)−k(n−i)vn+1−i−j

(
n− i
j − 1

))
i,j

.

It is well known that for n ≥ −1,

un+1 =
∑
r

(
r

n− r

)
a2r−nbn−r. (13)

We generalize this identity next.

Lemma 8. For k > 0 and n ≥ −1,

uk(n+1)

uk
=
∑
r

(
r

n− r

)
v2r−n
k

(
− (−b)k

)n−r
.

Proof. (Induction on n) If n = 1, then equations (12) and (13) give the identity. Suppose
that the result is true for n− 1 and n. Then

uk(n+1) = vkukn + (−b)k+1 uk(n−1)

= vk
∑
r

(
r

n− 1− r

)
v2r−n+1
k

(
− (−b)k

)n−1−r

− (−b)k
∑
r

(
r

n− 2− r

)
v2r−n+2
k

(
− (−b)k

)n−2−r

=
∑
r

[(
r

n− 1− r

)
+
(

r

n− 2− r

)]
v2r−n+2
k

(
− (−b)k

)n−1−r

=
∑
r

(
r + 1

n− 1− r

)
v2r−n+2
k

(
− (−b)k

)n−1−r

=
∑
r

(
r

n− r

)
v2r−n
k

(
− (−b)k

)n−r
.
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Lemma 9. Let k,m > 0 and 0 ≤ r ≤ n. Then(
ukmx− (−b)m u(k−1)m

um

)r (u(k+1)mx− (−b)m ukm
um

)n−r
=

∑
r1,r2,...,rk

(
n− r
r1

)(
n− r1
r2

)
. . .

(
n− rk−1

rk

)
× vkn−r−2r1−···−2rk−1−rk

m (− (−b)m)r1+r2+...+rk xn−rk . (14)

Proof. (Induction on k) For k = 1, the proof follows from u2n = unvn and

xr (vmx− (−b)m)n−r =
∑
s

(
n− r
s

)
vn−r−sm (− (−b)m)s xn−s

(see [3]). We assume that the equality holds for some positive integer k. If we replace(
vm − (−b)m x−1

)
by x and then multiply by xn, the left side of this equation becomes(

u(k+1)mx− (−b)m ukm
um

)r (u(k+2)mx− (−b)m u(k+1)m

um

)n−r
.

After some simplifications, if we expand the right side of this equation, then we get∑
r1,r2,...,rk+1

(
n− r
r1

)(
n− r1
r2

)
. . .

(
n− rk
rk+1

)
×vk(n+1)−r−2r1−···−2rk−rk+1

m (− (−b)m)r1+r2+···+rk+1 xn−rk+1 .

The proof is complete.

Lemma 10. For all m > 0,

tr
(
Hm
n

(
vk, b

k
))

=
uknm
uk

.

Proof. If we multiply both sides of the equation (14) by xr and summing over r, we get
n∑
r=0

(
ukmx− (−b)m u(k−1)m

um

)r (u(k+1)mx− (−b)m ukm
um

)n−r
xr

=
∑

r1,r2,...,rk

(
n− r
r1

)(
n− r1
r2

)
. . .

(
n− rk−1

rk

)
×vkn−r−2r1−···−2rk−1−rk

m (− (−b)m)r1+r2+···+rk xn+r−rk ,

where the coefficient of xn on the right side is tr
(
Hm
n

(
vk, b

k
))
. The coefficient of xn on

the left side of this equation without its denominator is∑
r+s+t=n

(
r

s

)(
n− r
t

)
uskm

(
− (−b)m u(k−1)m

)r−s
ut(k+1)m (− (−b)m ukm)s

=
∑
r+s≤n

(
r

s

)(
n− r
s

)
uskm

(
− (−b)m u(k−1)m

)r−s
un−r−s(k+1)m (− (−b)m ukm)s .
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For easy writing, denote this last expression by cn. Then

∞∑
n=0

cnx
n

=
∞∑

r,s=0

(
r

s

)
(− (−b)m)r ur−s(k−1)mu

2s
kmx

r+s
∑
n=r+s

(
n− r
s

)(
u(k+1)mx

)n−r−s
=

∞∑
r,s=0

(
r

s

)
(− (−b)m)r ur−s(k−1)mu

2s
kmx

r+s
(
1− u(k+1)mx

)−s−1

=
∞∑
s=0

(− (−b)m)s u2s
kmx

2s
(
1− u(k+1)mx

)−s−1
∑
r≥s

(
r

s

)(
(− (−b)m)u(k−1)mx

)r−s
=

∞∑
s=0

(− (−b)m)s u2s
kmx

2s
(
1− u(k+1)mx

)−s−1 (1 + (−b)m u(k−1)mx
)−s−1

=
1(

1− u(k+1)mx
) (

1 + (−b)m u(k−1)mx
) 1

1− (−(−b)m)su2s
kmx

2

(1−u(k+1)mx)(1+(−b)mu(k−1)mx)

=
1(

1− u(k+1)mx
) (

1 + (−b)m u(k−1)mx
)

+ (−b)m u2s
kmx

2
. (15)

Here by the Binet formula for {un} , we note that for all integers k > 0,

ukn − (−b)k uk(n−2)

uk
= vk(n−1) (16)

and

−

(
uknuk(n−2) − u2

k(n−1)

u2
k

)
= (−b)k(n−2) . (17)

Using (16) and (17), we write the right side of the equation (15) as

1(
1− u(k+1)mx

) (
1 + (−b)m u(k−1)mx

)
+ (−b)m u2s

kmx
2

=
1

1− vmkx+ (−b)mk x2
.

Thus, cn = ukmn
uk

, and so, tr
(
Hm
n

(
vk, b

k
))

= uknm
uk

. The proof is complete.

Theorem 11. The eigenvalues of Hn

(
vk, b

k
)

are

αkn, αk(n−1)βk, . . . , αkβk(n−1), βkn.
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Proof. Let fn (x) = det
(
xI −Hn

(
vk, b

k
))

and λ0, λ1, . . . , λn−1 denote the eigenvalues of
Hn

(
vk, b

k
)
. Then by Lemma 10,

f
′
n (x)
fn (x)

=
n−1∑
j=0

1
x− λj

=
n−1∑
m=0

x−m−1
m∑
j=0

λmj

=
∞∑
k=0

x−k−1tr
(
Hm
n−1

(
vk, b

k
))

=
∞∑
m=0

x−m−1uk(n−1)m

uk

=
∞∑
m=0

x−m−1
n−1∑
j=0

αjkmβk(n−j−1)m

=
n−1∑
j=0

1
x− αjkβ(n−j−1)k

.

Thus

fn (x) =
n−1∏
j=0

(
x− αjkβ(n−j−1)k

)
and so the eigenvalues of Hn

(
vk, b

k
)

are

αk(n−1), αk(n−2)βk, . . . , αkβk(n−2), βk(n−1).

Next, we give an expression of the characteristic polynomial of Hn in terms of Gaussian
binomials. Fix k and let rn := ukn. Define the k-Fibonomial coefficients by{ n

m

}
u,k

=
r1r2 . . . rn

(r1r2 . . . rm) (r1r2 . . . rn−m)
,

where
{
n
n

}
u,k

=
{
n
0

}
u,k

= 1.
Clearly, when k = 1, then

{
n
m

}
u,k

is reduced to the Fibonomial coefficient
(
n
m

)
u
.

Theorem 12.

fn(x) =
n−1∏
j=0

(
x− αjkβ(n−j−1)k

)
=

n∑
i=0

(−1)i (−b)ki(i−1)/2
{n
i

}
u,k
xn−i.

Proof. Here we can use the following familiar identity

n−1∏
j=0

(
1− qjx

)
=

n∑
i=0

(−1)i qi(i−1)/2
[n
i

]
q
xi, (18)
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where [n
i

]
q

=
(1− qn) . . .

(
1− qn−i+1

)
(1− qi) . . . (1− q)

,

are the usual q-binomial coefficients (Gaussian binomials).
If we replace q by (β/α)k we find that for all positive fixed integers k,[n

i

]
q
→ αki(i−n)

{n
i

}
u,k
.

Thus (18) becomes

n−1∏
j=0

(
1−

(
α−1β

)kj
x
)

=
n∑
i=0

(−1)i βki(i−1)/2αki(i+1)/2−nki
{n
i

}
u,k
xi.

Replacing x by αk(n−1)x, we get

n−1∏
j=0

(
1− α(n−j−1)kβkjx

)
=

n∑
i=0

(−1)i (αβ)ki(i−1)/2
{n
i

}
u,k
xi

=
n∑
i=0

(−1)i (−b)ki(i−1)/2
{n
i

}
u,k
xi.

Finally replacing x by x−1 gives us

n−1∏
j=0

(
1− α(n−j−1)kβkjx

)
=

n∑
i=0

(−1)i (−b)ki(i−1)/2
{n
i

}
u,k
xn−i.
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